SISTEMA DE TELEMETRIA E TELECOMANDO

- Todas as novas "áreas" (Casa de bombas, reservatórios elevados e boosters) deverão seguir padrões pré estabelecidos pelo DAE JUNDIAI para que se adequem aos padrões utilizados hoje, no sistema de telemetria e telecomando.
 - Todas as áreas devem conter sistema de aterramento elétrico e pára-raio.
- Nos casos de reservatórios elevados, ou de torres de rádio, deve instalar também luz obstáculo.

Diretrizes gerais para as áreas

- Qualquer área do sistema deverá ter uma RTU para o sistema de telemetria e telecomando.
- A área deve ter um sistema de comunicação de transmissão e recebimento dados para a central de telemetria e telecomando. Tal comunicação deve se dar através de rádio frequência digital operando no sistema spread spectrum.

Elementos a serem monitorados

- Nível de reservatório (s).
- Corrente de motor de bomba (s).
- Tensão de entrada da estação.
- Vazão de entrada e vazão de saída.
- Pressão de rede de saída de bombeado.
- Invasão de área (Sitema de Alarme).
- Status de bomba(s) ligada/desligada.
- Status de válvula(s) aberta/fechada.

Elementos a serem telecomandados

Liga / Desliga bomba (s)

Abre / Fecha Válvula (s)

No Break

O painel da RTU e o sistema de rádio deverão ser alimentado por um noBreak de 1000 VA, afim de manter a comunicação entre a estação remota e a central de telemetria e telecomando mesmo em momentos de panes elétricas.

Diretrizes de fornecimento: Materiais, equipamentos e serviços

- Painel auto portante, para o quadro geral de força e luz
- Painéis auto portante, com soft start(ers) ou inversor(es) de frequência (conforme necessidade) para motor(es) de bombas da estação.
- 1 Painel com RTU, equipamentos referentes à telemetria e telecomando e comunicação de dados.

• Transdutores (sensores) eletrônicos de grandezas analógicas: Tensão de rede, pressão, vazão, corrente de motores e níveis de reservatórios. Todos com saída de 4-20mA para interligação com a RTU.

Do painel da RTU

Comutador local/remoto – Define o modo de operação da estação, especificando se o comando estará sendo feito no armário de comando local ou pelo supervisório no CCO. O supervisório deverá reconhecer e informar um ou outro estado. Cada conjunto motobomba deverá ter seu próprio comutador. Se ao conjunto motobomba for agregado uma válvula motorizada, essa será comandada pelo mesmo comutador local / remoto da bomba. Se a válvula motorizada operar independente da bomba ela deverá ter seu próprio comutador. A RTU deverá ter um ponto de entrada digital para cada comutador indicando operação em local.

Projetos que devem acompanhar os equipamentos:

- Projeto eletro eletrônico de Painel RTU.
- Projeto eletro eletrônico de Painel de Acionamento (inversores ou soft starters).
 - Projeto elétrico de Quadro Geral.
 - Projeto eletro eletrônico de Painel RTU e Comunicação.
 - Folha descritiva do Sistema de Comunicação.

Serviços a serem desenvolvidos

- Montagem dos painéis: Quadro geral de força e luz, montagem dos painéis de acionamento (soft-start ou inversores) montagem dos painéis de RTU.
 - Instalação da torre ou poste para fixação de antena.
- Interligação dos painéis, (quadro geral, painéis de acionamento, painel da RTU)
- Instalação dos transdutores de vazão e pressão a juzante do barrilete das bombas
- Instalação dos transdutores de tensão, corrente, pára-raio, sistema de aterramento, antenas e demais acessórios.
- Efetuar a transmissão de dados entre a RTU e o software supervisório instalado na central de operação "CCO" na sede do DAE JUNDIAI, através de rádio frequência.
- Alteração do software supervisório existente, agregando mais essa área, com desenvolvimento e tela gráfica animada e com as características e recursos atualmente existentes, Item 5 Sistema Supervisório existente.

Anexos

- Anexo I Dados técnicos da RTU, rádio, e eelementos de telemetria e telecomando.
 - Anexo II Desenho ilustrativo " quadro geral"
 - Anexo III Desenho ilustrativo " exemplo de inversor de frequência"
 - Anexo IV Desenho ilustrativo "exemplo para soft Starters"

- Anexo V Desenho ilustrativo "exemplo de painel RTU"
- Anexo VI Desenho ilustrativo para instalação Booster
- Anexo VII Desenho ilustrativo " Casa de bombas com reservatório semi enterrado"
 - Anexo VIII Desenho ilustrativo " reservatório elevado"
 - Anexo IX Desenho ilustrativo "detalhes de torre de comunicação"
- Anexo X Desenho ilustrativo "Instalação de torre em reservatório elevado"

ESPECIFICAÇÕES DOS EQUIPAMENTOS

RTU

Hardware:

- Alimentação 12/24 VDC < 50 mA
- 8 entradas digitais
- 8 saídas digitais
- 8 entradas analógicas 10 bits
- 2 entradas para alarmes (uma dedicada à queda de energia a outra pode ser configurada para painel aberto, porta aberta e invasão de área)
 - 1 porta de comunicação serial RS232
- Interfaceamento para teclado e vídeo a fim de permitir a parametrização da mesma, sendo que estes dispositivos podem ficar permanentemente instalados ou não
 - Alarme de painel aberto quando em nível lógico um (1) contato aberto

Conectores da RTU

- 8 entradas digitais (12/24 VDC) isoladas por acopladores ópticos. Onde o pino 1 = canal 0 pino 8 = canal 7.
- 8 drives coletor aberto para saídas digitais que quando acionadas vão para nível lógico 0. Onde o pino 1 = canal 0 e o pino 8 = canal 7
 - 8 entradas analógicas. Onde o pino 1 = canal 0 e o pino 8 = canal 7
 - Entrada somente de quatro a vinte mA (4 a 20 mA)
 - Resolução de dez bits (10 bits)
 - Resistor de entrada para loop de corrente de 125 Ohms
 - Máxima tensão de entrada de 2.5 Volts (125 * 0.020)

- Pino zero Volts
- Pino recepção, ou seja, a informação a ser recebida da estação central
- Pino transmissão, ou seja, as informações a serem transmitidas pelo uSmart
- Pino RTS, este sinal é utilizado quando a estação utiliza um rádio que requer controle da portadora
 - Pino alimentação de +12/24 VDC
 - Pinos zero Volt sobressalentes
- Pino alarme de queda de energia quando em nível lógico um (1) contato aberto
 - Pino alarme de painel aberto quando em nível lógico um (1) contato aberto

Software da RTU

Capacidade de receber arquivos de configuração XX.SIS.

Configuração feita através de download pela porta serial e software de configuração.

Capacidade de sequenciamento de bombas.

Caixa Painel

A caixa painel que abriga os equipamentos que compõem a estação remota possui as características abaixo descritas:

- Grau de proteção: IP55
- Normas de proteção: DIN 40050 IEC 529
- Normas de dimensão: NEMA 1, 2, 3, R.
- Em casos de curto-circuito: DVE00103
- Tratamento de chapa fosfatização a base de Zn e Fe
- Pintura com tinta a pó, aplicada eletrostaticamente, com a seguinte composição: 50% poliéster e 50% epóxi
 - Camada: 50 µm
 - Elasticidade: ERIKSON 7 8mm
 - Aderência: Gro
 - Polimerização: 20 min. com 220 °C

Transdutores de Corrente

Fator de Oscilação: 0,35 rms (1º p.p.)

Temperatura de operação: -10C a 60°C

• Saída: 4 - 20 MA

• Entrada: 0 - 5 A

• Precisão: 0,5% FE

• Impedância saída: 1 Mr

• Tensão de compliância: 15 V

• Tempo de resposta: < 1 seg.

Transdutores de Tensão

• Temperatura de operação: -10C a 60°C

• Saída: 4 - 20 MA

• Entrada: 0 - 600 VCA

• Precisão: 0,5% FE

Sensor de vazão tipo inserção de aço inox 316

- Velocidade do fluido 0,1 a 6,0 m/s
- Linearidade + ou 1%
- Repetibilidade + ou − 0,5%
- Alimentação 5 a 24 Vdc
- Diâmetro 1 1/2"
- Comprimento do cabo 7,6 metros
- Distancia máxima de 300 metros
- Transdutor tipo Sonda hidrostática
- Alimentação 8 a 28 Vdc
- Saída 4 a 20 mA
- Cabo de ligação especial com respiro
- Alcance 10 MCA

- Sobre pressão 2 vezes o alcance
- Compensação de temperatura 10 a 80 grausRepetibilidade, histerese e linearidade menor ou igual a 0,25 % do fundo de escala
 - Corpo em aço inoxidável AISI 316

Indicador totalizador de vazão

- Selecionável em único display
- Microprocessado
- Frontal de painel, alimentação 12 a 24 Vdc 2 ou 3 fios
- Saída 4 a 20 mA
- Saído pulso coletor aberto
- Display 2 colunas de 16 dígitos cristal liquido
- 2 funções de totalizador resetável e acumulativo
- Calibração e ajuste via teclado frontal

Nobreaks (Fonte ininterrupta de energia)

- Potencia 1000 VA.
- Entrada 110/220 Vac saída 110 Vac.
- Transformador isolador com blindagem eletrostática.
- 6 tomadas.
- Carregador de bateria inteligente.
- Tempo de comutação menor que 1 milisegundo.
- Espaço para bateria automotiva.

Rádio

- Freqüência ISM 902 a 928 Mhz.
- Tipo Spread Spectrum FHSS.
- Capacidade de redes 10 arranjos de seqüências a partir de 50 freqüências.
- Interface serial RS232 / RS485.
- Velocidade de transmissão 9600 bps.
- Potencia transmissão 0,01 a 1 watt, programação por software.
- Dimensão 69,9 x 139,7 x 28,6 mm.

- Conector RF SMA-F.
- Conector modem DB 9F.
- Alimentação 5 Vdc.
- Programação Via software.
- Modulação FSK (Frequency Shift Keyimg).
- Receptor, sensibilidade 900 Mhz -110 dBm a 9600 bps.
- Impedância de entrada 50 Ohm.
- Corrente 80 mA.
- Transmissor, corrente 730 Ma.

Antena tipo Yagi direcional

- Elementos: 5 / 8 / 10 (conforme necessidade)
- Faixa de operação 406 a 430 Mhz
- Ganho 9 / 12 / 14 dBi (conforme necessidade)
- Comprimento 695 milímetros
- Largura 350 milímetros

Central de Alarme

- Ligamento e desligamento por controle remoto
- Sensor Infravermelho sem fio.
- Sirene 12V/110dB para alarme.

Proteção analógica 24 Vdc / 100mA contra sobre tensão

- Proteção de duas linhas com centelhador a gás, PTC e Transorbe
- Fixação em trilho DIM 35

Aterramento e proteção contra descargas atmosféricas

Todos os equipamentos eletrônicos instalados (RTU's, sensores, rádios, proteções, etc) e também os elétricos, (No break, controle de válvulas, liga/desliga motores, pára raios e outros) deverão ser plenamente aterrados, evitando-se pontos flutuantes de tensão ou escoamentos pontuais das correntes de surtos. Para tal, procedimentos adicionais deverão ser considerados para execução do aterramento, como implantação de malhas equipotenciais e vários pontos de escoamento de correntes de surto, e na sua existência, o executor integrará o aterramento do telecomando ao mesmo.

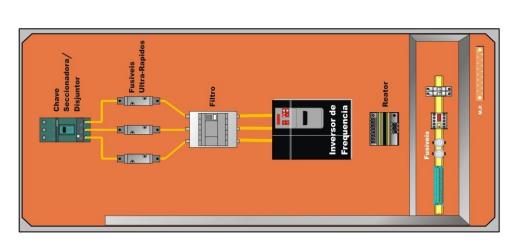
Haste de aterramento 5/8 polegadas x 2,4 metros com grampo

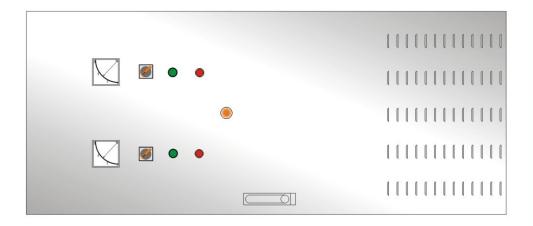
Proteções Contra Transientes ou Surtos

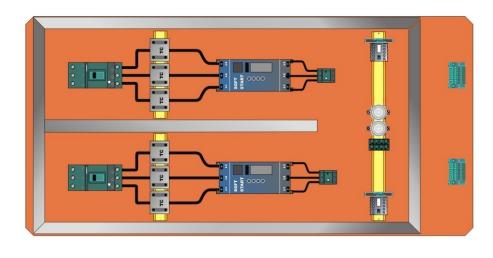
Transientes na rede causados por raios, desequilíbrios e outros, e também surtos causados por descargas atmosféricas, deverão ser atenuados de modo a não comprometer os equipamentos. Deverão ser fornecidos também, para amenizar o máximo possível estes efeitos, protetores de rede elétrica nos painéis de comando dos atuadores.

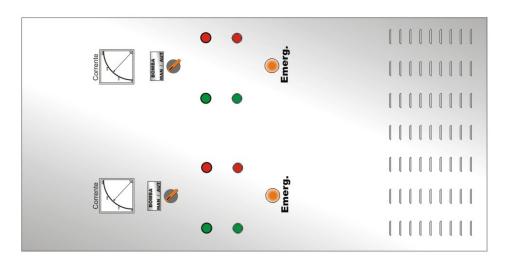
Filtros de Linha

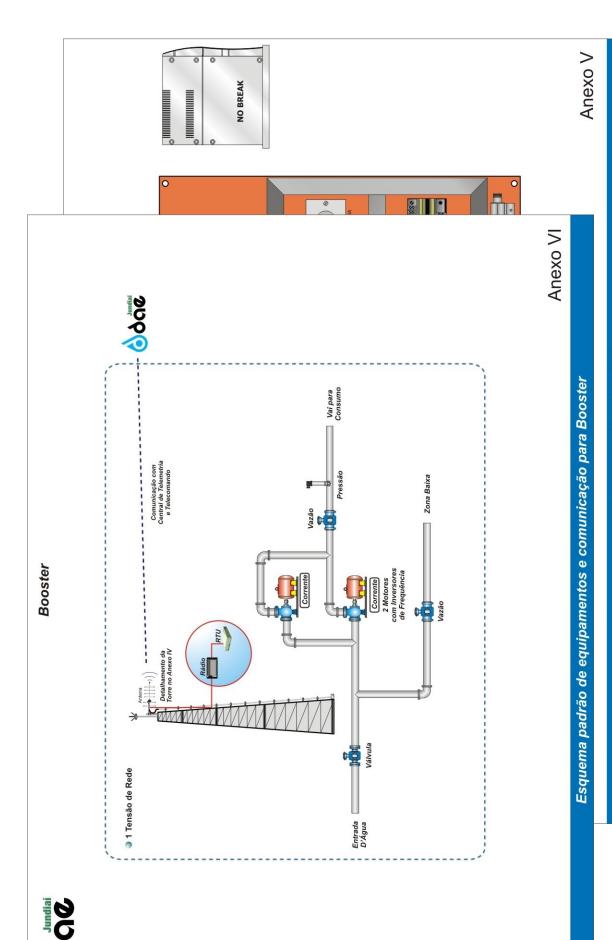
Harmônicos de 3ª, 5ª e 7ª ordem, geradas por contatores dos comandos de atuadores, poderão interferir em determinados instantes no sistema de telemetria / telecomando, dependendo da intensidade. Para eliminar esta possibilidade, deverão ser instalados filtros de linha.

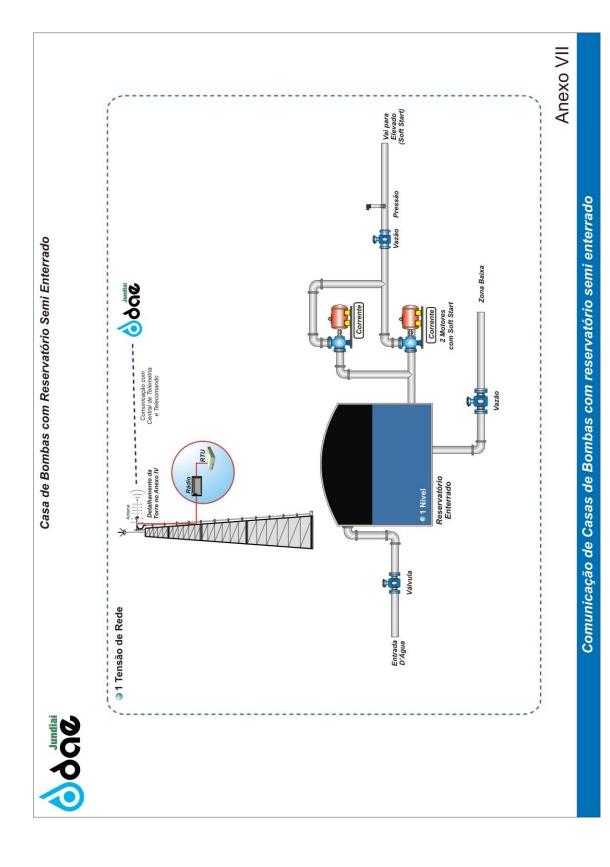

Corrosão

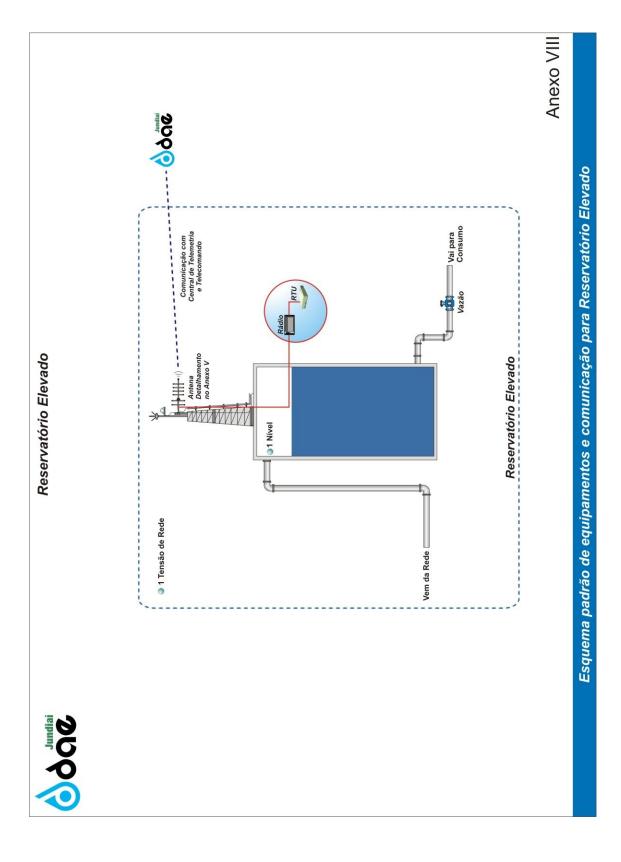

O ambiente onde se instalarão os equipamentos de telecontrole, normalmente tem alto grau de corrosão. Desta forma, deverão ser adotados graus de proteção adequados para os painéis, e deverão ser utilizados somente eletrodutos de alumínio para proteção de cabos.



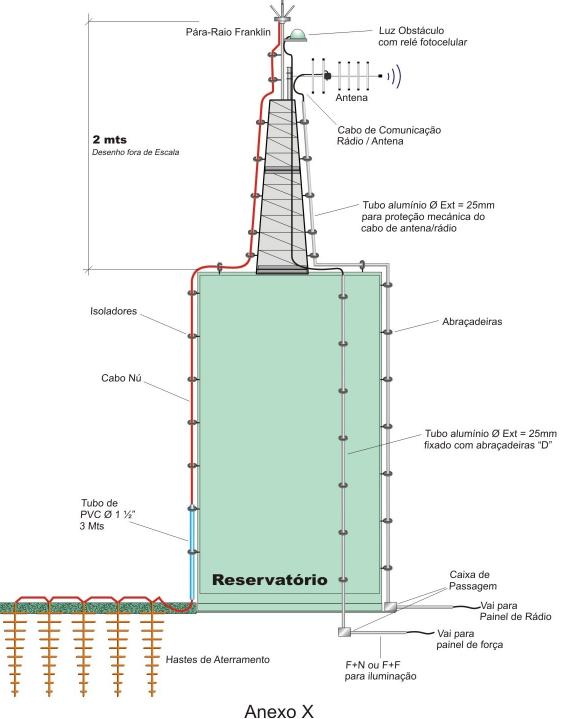








Exemplo de Painel de RTU



Detalhamento da Torre

Anexo IX

Padrão de Instação de Torre localizada em Reservatório Elevado

